Accurate and Lightweight Image Super-Resolution With Model-Guided Deep Unfolding Network

نویسندگان

چکیده

Deep neural networks (DNNs) based methods have achieved great success in single image super-resolution (SISR). However, existing state-of-the-art SISR techniques are designed like black boxes lacking transparency and interpretability. Moreover, the improvement visual quality is often at price of increased model complexity due to black-box design. In this paper, we present advocate an explainable approach toward named model-guided deep unfolding network (MoG-DUN). Targeting breaking coherence barrier, opt work with a well-established prior nonlocal auto-regressive use it guide our DNN By integrating denoising regularization as trainable modules within learning framework, can unfold iterative process model-based into multi-stage concatenation building blocks three interconnected (denoising, nonlocal-AR, reconstruction). The design all leverages latest advances including dense/skip connections well fast implementation. addition explainability, MoG-DUN accurate (producing fewer aliasing artifacts), computationally efficient (with reduced parameters), versatile (capable handling multiple degradations). superiority proposed method SR RCAN, SRMDNF, SRFBN substantiated by extensive experiments on several popular datasets various degradation scenarios.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast, Accurate, and, Lightweight Super-Resolution with Cascading Residual Network

In recent years, deep learning methods have been successfully applied to single-image super-resolution tasks. Despite their great performances, deep learning methods cannot be easily applied to real-world applications due to the requirement of heavy computation. In this paper, we address this issue by proposing an accurate and lightweight deep learning model for image super-resolution. In detai...

متن کامل

Fast and Accurate Image Super Resolution by Deep CNN with Skip Connection and Network in Network

We propose a highly efficient and faster Single Image Super-Resolution (SISR) model with Deep Convolutional neural networks (Deep CNN). Deep CNN have recently shown that they have a significant reconstruction performance on single-image super-resolution. Current trend is using deeper CNN layers to improve performance. However, deep models demand larger computation resources and is not suitable ...

متن کامل

Deep Network Cascade for Image Super-resolution

In this paper, we propose a new model called deep network cascade (DNC) to gradually upscale low-resolution images layer by layer, each layer with a small scale factor. DNC is a cascade of multiple stacked collaborative local auto-encoders. In each layer of the cascade, non-local self-similarity search is first performed to enhance high-frequency texture details of the partitioned patches in th...

متن کامل

A Deep Model for Super-resolution Enhancement from a Single Image

This study presents a method to reconstruct a high-resolution image using a deep convolution neural network. We propose a deep model, entitled Deep Block Super Resolution (DBSR), by fusing the output features of a deep convolutional network and a shallow convolutional network. In this way, our model benefits from high frequency and low frequency features extracted from deep and shallow networks...

متن کامل

A Deep Primal-Dual Network for Guided Depth Super-Resolution

In this paper we present a novel method to increase the spatial resolution of depth images. We combine a deep fully convolutional network with a non-local variational method in a deep primal-dual network. The joint network computes a noise-free, highresolution estimate from a noisy, low-resolution input depth map. Additionally, a highresolution intensity image is used to guide the reconstructio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Journal of Selected Topics in Signal Processing

سال: 2021

ISSN: ['1941-0484', '1932-4553']

DOI: https://doi.org/10.1109/jstsp.2020.3037516